3.20.15 \(\int \frac {(a+b x) (d+e x)^{3/2}}{(a^2+2 a b x+b^2 x^2)^{5/2}} \, dx\)

Optimal. Leaf size=207 \[ -\frac {e^2 \sqrt {d+e x}}{8 b^2 \sqrt {a^2+2 a b x+b^2 x^2} (b d-a e)}-\frac {e \sqrt {d+e x}}{4 b^2 (a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {(d+e x)^{3/2}}{3 b \left (a^2+2 a b x+b^2 x^2\right )^{3/2}}+\frac {e^3 (a+b x) \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )}{8 b^{5/2} \sqrt {a^2+2 a b x+b^2 x^2} (b d-a e)^{3/2}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 207, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {768, 646, 47, 51, 63, 208} \begin {gather*} -\frac {e^2 \sqrt {d+e x}}{8 b^2 \sqrt {a^2+2 a b x+b^2 x^2} (b d-a e)}+\frac {e^3 (a+b x) \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )}{8 b^{5/2} \sqrt {a^2+2 a b x+b^2 x^2} (b d-a e)^{3/2}}-\frac {e \sqrt {d+e x}}{4 b^2 (a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {(d+e x)^{3/2}}{3 b \left (a^2+2 a b x+b^2 x^2\right )^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((a + b*x)*(d + e*x)^(3/2))/(a^2 + 2*a*b*x + b^2*x^2)^(5/2),x]

[Out]

-(d + e*x)^(3/2)/(3*b*(a^2 + 2*a*b*x + b^2*x^2)^(3/2)) - (e^2*Sqrt[d + e*x])/(8*b^2*(b*d - a*e)*Sqrt[a^2 + 2*a
*b*x + b^2*x^2]) - (e*Sqrt[d + e*x])/(4*b^2*(a + b*x)*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) + (e^3*(a + b*x)*ArcTanh[
(Sqrt[b]*Sqrt[d + e*x])/Sqrt[b*d - a*e]])/(8*b^(5/2)*(b*d - a*e)^(3/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 646

Int[((d_.) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(a + b*x + c*x^2)^Fra
cPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*FracPart[p])), Int[(d + e*x)^m*(b/2 + c*x)^(2*p), x], x] /; FreeQ[{a, b,
 c, d, e, m, p}, x] && EqQ[b^2 - 4*a*c, 0] &&  !IntegerQ[p] && NeQ[2*c*d - b*e, 0]

Rule 768

Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Sim
p[(g*(d + e*x)^m*(a + b*x + c*x^2)^(p + 1))/(2*c*(p + 1)), x] - Dist[(e*g*m)/(2*c*(p + 1)), Int[(d + e*x)^(m -
 1)*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[2*c*f - b*g, 0] && LtQ[p, -1]
&& GtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {(a+b x) (d+e x)^{3/2}}{\left (a^2+2 a b x+b^2 x^2\right )^{5/2}} \, dx &=-\frac {(d+e x)^{3/2}}{3 b \left (a^2+2 a b x+b^2 x^2\right )^{3/2}}+\frac {e \int \frac {\sqrt {d+e x}}{\left (a^2+2 a b x+b^2 x^2\right )^{3/2}} \, dx}{2 b}\\ &=-\frac {(d+e x)^{3/2}}{3 b \left (a^2+2 a b x+b^2 x^2\right )^{3/2}}+\frac {\left (b e \left (a b+b^2 x\right )\right ) \int \frac {\sqrt {d+e x}}{\left (a b+b^2 x\right )^3} \, dx}{2 \sqrt {a^2+2 a b x+b^2 x^2}}\\ &=-\frac {(d+e x)^{3/2}}{3 b \left (a^2+2 a b x+b^2 x^2\right )^{3/2}}-\frac {e \sqrt {d+e x}}{4 b^2 (a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}+\frac {\left (e^2 \left (a b+b^2 x\right )\right ) \int \frac {1}{\left (a b+b^2 x\right )^2 \sqrt {d+e x}} \, dx}{8 b \sqrt {a^2+2 a b x+b^2 x^2}}\\ &=-\frac {(d+e x)^{3/2}}{3 b \left (a^2+2 a b x+b^2 x^2\right )^{3/2}}-\frac {e^2 \sqrt {d+e x}}{8 b^2 (b d-a e) \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {e \sqrt {d+e x}}{4 b^2 (a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {\left (e^3 \left (a b+b^2 x\right )\right ) \int \frac {1}{\left (a b+b^2 x\right ) \sqrt {d+e x}} \, dx}{16 b^2 (b d-a e) \sqrt {a^2+2 a b x+b^2 x^2}}\\ &=-\frac {(d+e x)^{3/2}}{3 b \left (a^2+2 a b x+b^2 x^2\right )^{3/2}}-\frac {e^2 \sqrt {d+e x}}{8 b^2 (b d-a e) \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {e \sqrt {d+e x}}{4 b^2 (a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {\left (e^2 \left (a b+b^2 x\right )\right ) \operatorname {Subst}\left (\int \frac {1}{a b-\frac {b^2 d}{e}+\frac {b^2 x^2}{e}} \, dx,x,\sqrt {d+e x}\right )}{8 b^2 (b d-a e) \sqrt {a^2+2 a b x+b^2 x^2}}\\ &=-\frac {(d+e x)^{3/2}}{3 b \left (a^2+2 a b x+b^2 x^2\right )^{3/2}}-\frac {e^2 \sqrt {d+e x}}{8 b^2 (b d-a e) \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {e \sqrt {d+e x}}{4 b^2 (a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}+\frac {e^3 (a+b x) \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )}{8 b^{5/2} (b d-a e)^{3/2} \sqrt {a^2+2 a b x+b^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.03, size = 68, normalized size = 0.33 \begin {gather*} \frac {2 e^3 (a+b x) (d+e x)^{5/2} \, _2F_1\left (\frac {5}{2},4;\frac {7}{2};-\frac {b (d+e x)}{a e-b d}\right )}{5 \sqrt {(a+b x)^2} (a e-b d)^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((a + b*x)*(d + e*x)^(3/2))/(a^2 + 2*a*b*x + b^2*x^2)^(5/2),x]

[Out]

(2*e^3*(a + b*x)*(d + e*x)^(5/2)*Hypergeometric2F1[5/2, 4, 7/2, -((b*(d + e*x))/(-(b*d) + a*e))])/(5*(-(b*d) +
 a*e)^4*Sqrt[(a + b*x)^2])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 32.12, size = 198, normalized size = 0.96 \begin {gather*} \frac {(-a e-b e x) \left (\frac {e^3 \sqrt {d+e x} \left (3 a^2 e^2+8 a b e (d+e x)-6 a b d e+3 b^2 d^2-3 b^2 (d+e x)^2-8 b^2 d (d+e x)\right )}{24 b^2 (b d-a e) (-a e-b (d+e x)+b d)^3}+\frac {e^3 \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x} \sqrt {a e-b d}}{b d-a e}\right )}{8 b^{5/2} (a e-b d)^{3/2}}\right )}{e \sqrt {\frac {(a e+b e x)^2}{e^2}}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[((a + b*x)*(d + e*x)^(3/2))/(a^2 + 2*a*b*x + b^2*x^2)^(5/2),x]

[Out]

((-(a*e) - b*e*x)*((e^3*Sqrt[d + e*x]*(3*b^2*d^2 - 6*a*b*d*e + 3*a^2*e^2 - 8*b^2*d*(d + e*x) + 8*a*b*e*(d + e*
x) - 3*b^2*(d + e*x)^2))/(24*b^2*(b*d - a*e)*(b*d - a*e - b*(d + e*x))^3) + (e^3*ArcTan[(Sqrt[b]*Sqrt[-(b*d) +
 a*e]*Sqrt[d + e*x])/(b*d - a*e)])/(8*b^(5/2)*(-(b*d) + a*e)^(3/2))))/(e*Sqrt[(a*e + b*e*x)^2/e^2])

________________________________________________________________________________________

fricas [B]  time = 0.45, size = 666, normalized size = 3.22 \begin {gather*} \left [-\frac {3 \, {\left (b^{3} e^{3} x^{3} + 3 \, a b^{2} e^{3} x^{2} + 3 \, a^{2} b e^{3} x + a^{3} e^{3}\right )} \sqrt {b^{2} d - a b e} \log \left (\frac {b e x + 2 \, b d - a e - 2 \, \sqrt {b^{2} d - a b e} \sqrt {e x + d}}{b x + a}\right ) + 2 \, {\left (8 \, b^{4} d^{3} - 10 \, a b^{3} d^{2} e - a^{2} b^{2} d e^{2} + 3 \, a^{3} b e^{3} + 3 \, {\left (b^{4} d e^{2} - a b^{3} e^{3}\right )} x^{2} + 2 \, {\left (7 \, b^{4} d^{2} e - 11 \, a b^{3} d e^{2} + 4 \, a^{2} b^{2} e^{3}\right )} x\right )} \sqrt {e x + d}}{48 \, {\left (a^{3} b^{5} d^{2} - 2 \, a^{4} b^{4} d e + a^{5} b^{3} e^{2} + {\left (b^{8} d^{2} - 2 \, a b^{7} d e + a^{2} b^{6} e^{2}\right )} x^{3} + 3 \, {\left (a b^{7} d^{2} - 2 \, a^{2} b^{6} d e + a^{3} b^{5} e^{2}\right )} x^{2} + 3 \, {\left (a^{2} b^{6} d^{2} - 2 \, a^{3} b^{5} d e + a^{4} b^{4} e^{2}\right )} x\right )}}, -\frac {3 \, {\left (b^{3} e^{3} x^{3} + 3 \, a b^{2} e^{3} x^{2} + 3 \, a^{2} b e^{3} x + a^{3} e^{3}\right )} \sqrt {-b^{2} d + a b e} \arctan \left (\frac {\sqrt {-b^{2} d + a b e} \sqrt {e x + d}}{b e x + b d}\right ) + {\left (8 \, b^{4} d^{3} - 10 \, a b^{3} d^{2} e - a^{2} b^{2} d e^{2} + 3 \, a^{3} b e^{3} + 3 \, {\left (b^{4} d e^{2} - a b^{3} e^{3}\right )} x^{2} + 2 \, {\left (7 \, b^{4} d^{2} e - 11 \, a b^{3} d e^{2} + 4 \, a^{2} b^{2} e^{3}\right )} x\right )} \sqrt {e x + d}}{24 \, {\left (a^{3} b^{5} d^{2} - 2 \, a^{4} b^{4} d e + a^{5} b^{3} e^{2} + {\left (b^{8} d^{2} - 2 \, a b^{7} d e + a^{2} b^{6} e^{2}\right )} x^{3} + 3 \, {\left (a b^{7} d^{2} - 2 \, a^{2} b^{6} d e + a^{3} b^{5} e^{2}\right )} x^{2} + 3 \, {\left (a^{2} b^{6} d^{2} - 2 \, a^{3} b^{5} d e + a^{4} b^{4} e^{2}\right )} x\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(e*x+d)^(3/2)/(b^2*x^2+2*a*b*x+a^2)^(5/2),x, algorithm="fricas")

[Out]

[-1/48*(3*(b^3*e^3*x^3 + 3*a*b^2*e^3*x^2 + 3*a^2*b*e^3*x + a^3*e^3)*sqrt(b^2*d - a*b*e)*log((b*e*x + 2*b*d - a
*e - 2*sqrt(b^2*d - a*b*e)*sqrt(e*x + d))/(b*x + a)) + 2*(8*b^4*d^3 - 10*a*b^3*d^2*e - a^2*b^2*d*e^2 + 3*a^3*b
*e^3 + 3*(b^4*d*e^2 - a*b^3*e^3)*x^2 + 2*(7*b^4*d^2*e - 11*a*b^3*d*e^2 + 4*a^2*b^2*e^3)*x)*sqrt(e*x + d))/(a^3
*b^5*d^2 - 2*a^4*b^4*d*e + a^5*b^3*e^2 + (b^8*d^2 - 2*a*b^7*d*e + a^2*b^6*e^2)*x^3 + 3*(a*b^7*d^2 - 2*a^2*b^6*
d*e + a^3*b^5*e^2)*x^2 + 3*(a^2*b^6*d^2 - 2*a^3*b^5*d*e + a^4*b^4*e^2)*x), -1/24*(3*(b^3*e^3*x^3 + 3*a*b^2*e^3
*x^2 + 3*a^2*b*e^3*x + a^3*e^3)*sqrt(-b^2*d + a*b*e)*arctan(sqrt(-b^2*d + a*b*e)*sqrt(e*x + d)/(b*e*x + b*d))
+ (8*b^4*d^3 - 10*a*b^3*d^2*e - a^2*b^2*d*e^2 + 3*a^3*b*e^3 + 3*(b^4*d*e^2 - a*b^3*e^3)*x^2 + 2*(7*b^4*d^2*e -
 11*a*b^3*d*e^2 + 4*a^2*b^2*e^3)*x)*sqrt(e*x + d))/(a^3*b^5*d^2 - 2*a^4*b^4*d*e + a^5*b^3*e^2 + (b^8*d^2 - 2*a
*b^7*d*e + a^2*b^6*e^2)*x^3 + 3*(a*b^7*d^2 - 2*a^2*b^6*d*e + a^3*b^5*e^2)*x^2 + 3*(a^2*b^6*d^2 - 2*a^3*b^5*d*e
 + a^4*b^4*e^2)*x)]

________________________________________________________________________________________

giac [A]  time = 0.28, size = 279, normalized size = 1.35 \begin {gather*} -\frac {\arctan \left (\frac {\sqrt {x e + d} b}{\sqrt {-b^{2} d + a b e}}\right ) e^{3}}{8 \, {\left (b^{3} d \mathrm {sgn}\left ({\left (x e + d\right )} b e - b d e + a e^{2}\right ) - a b^{2} e \mathrm {sgn}\left ({\left (x e + d\right )} b e - b d e + a e^{2}\right )\right )} \sqrt {-b^{2} d + a b e}} - \frac {3 \, {\left (x e + d\right )}^{\frac {5}{2}} b^{2} e^{3} + 8 \, {\left (x e + d\right )}^{\frac {3}{2}} b^{2} d e^{3} - 3 \, \sqrt {x e + d} b^{2} d^{2} e^{3} - 8 \, {\left (x e + d\right )}^{\frac {3}{2}} a b e^{4} + 6 \, \sqrt {x e + d} a b d e^{4} - 3 \, \sqrt {x e + d} a^{2} e^{5}}{24 \, {\left (b^{3} d \mathrm {sgn}\left ({\left (x e + d\right )} b e - b d e + a e^{2}\right ) - a b^{2} e \mathrm {sgn}\left ({\left (x e + d\right )} b e - b d e + a e^{2}\right )\right )} {\left ({\left (x e + d\right )} b - b d + a e\right )}^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(e*x+d)^(3/2)/(b^2*x^2+2*a*b*x+a^2)^(5/2),x, algorithm="giac")

[Out]

-1/8*arctan(sqrt(x*e + d)*b/sqrt(-b^2*d + a*b*e))*e^3/((b^3*d*sgn((x*e + d)*b*e - b*d*e + a*e^2) - a*b^2*e*sgn
((x*e + d)*b*e - b*d*e + a*e^2))*sqrt(-b^2*d + a*b*e)) - 1/24*(3*(x*e + d)^(5/2)*b^2*e^3 + 8*(x*e + d)^(3/2)*b
^2*d*e^3 - 3*sqrt(x*e + d)*b^2*d^2*e^3 - 8*(x*e + d)^(3/2)*a*b*e^4 + 6*sqrt(x*e + d)*a*b*d*e^4 - 3*sqrt(x*e +
d)*a^2*e^5)/((b^3*d*sgn((x*e + d)*b*e - b*d*e + a*e^2) - a*b^2*e*sgn((x*e + d)*b*e - b*d*e + a*e^2))*((x*e + d
)*b - b*d + a*e)^3)

________________________________________________________________________________________

maple [B]  time = 0.07, size = 326, normalized size = 1.57 \begin {gather*} \frac {\left (3 b^{3} e^{3} x^{3} \arctan \left (\frac {\sqrt {e x +d}\, b}{\sqrt {\left (a e -b d \right ) b}}\right )+9 a \,b^{2} e^{3} x^{2} \arctan \left (\frac {\sqrt {e x +d}\, b}{\sqrt {\left (a e -b d \right ) b}}\right )+9 a^{2} b \,e^{3} x \arctan \left (\frac {\sqrt {e x +d}\, b}{\sqrt {\left (a e -b d \right ) b}}\right )+3 a^{3} e^{3} \arctan \left (\frac {\sqrt {e x +d}\, b}{\sqrt {\left (a e -b d \right ) b}}\right )-3 \sqrt {\left (a e -b d \right ) b}\, \sqrt {e x +d}\, a^{2} e^{2}+6 \sqrt {\left (a e -b d \right ) b}\, \sqrt {e x +d}\, a b d e -3 \sqrt {\left (a e -b d \right ) b}\, \sqrt {e x +d}\, b^{2} d^{2}-8 \sqrt {\left (a e -b d \right ) b}\, \left (e x +d \right )^{\frac {3}{2}} a b e +8 \sqrt {\left (a e -b d \right ) b}\, \left (e x +d \right )^{\frac {3}{2}} b^{2} d +3 \sqrt {\left (a e -b d \right ) b}\, \left (e x +d \right )^{\frac {5}{2}} b^{2}\right ) \left (b x +a \right )^{2}}{24 \sqrt {\left (a e -b d \right ) b}\, \left (a e -b d \right ) \left (\left (b x +a \right )^{2}\right )^{\frac {5}{2}} b^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)*(e*x+d)^(3/2)/(b^2*x^2+2*a*b*x+a^2)^(5/2),x)

[Out]

1/24*(3*b^3*e^3*x^3*arctan((e*x+d)^(1/2)/((a*e-b*d)*b)^(1/2)*b)+9*a*b^2*e^3*x^2*arctan((e*x+d)^(1/2)/((a*e-b*d
)*b)^(1/2)*b)+3*((a*e-b*d)*b)^(1/2)*(e*x+d)^(5/2)*b^2+9*a^2*b*e^3*x*arctan((e*x+d)^(1/2)/((a*e-b*d)*b)^(1/2)*b
)-8*((a*e-b*d)*b)^(1/2)*(e*x+d)^(3/2)*a*b*e+8*((a*e-b*d)*b)^(1/2)*(e*x+d)^(3/2)*b^2*d+3*a^3*e^3*arctan((e*x+d)
^(1/2)/((a*e-b*d)*b)^(1/2)*b)-3*((a*e-b*d)*b)^(1/2)*(e*x+d)^(1/2)*a^2*e^2+6*((a*e-b*d)*b)^(1/2)*(e*x+d)^(1/2)*
a*b*d*e-3*((a*e-b*d)*b)^(1/2)*(e*x+d)^(1/2)*b^2*d^2)*(b*x+a)^2/((a*e-b*d)*b)^(1/2)/b^2/(a*e-b*d)/((b*x+a)^2)^(
5/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (b x + a\right )} {\left (e x + d\right )}^{\frac {3}{2}}}{{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {5}{2}}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(e*x+d)^(3/2)/(b^2*x^2+2*a*b*x+a^2)^(5/2),x, algorithm="maxima")

[Out]

integrate((b*x + a)*(e*x + d)^(3/2)/(b^2*x^2 + 2*a*b*x + a^2)^(5/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\left (a+b\,x\right )\,{\left (d+e\,x\right )}^{3/2}}{{\left (a^2+2\,a\,b\,x+b^2\,x^2\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*x)*(d + e*x)^(3/2))/(a^2 + b^2*x^2 + 2*a*b*x)^(5/2),x)

[Out]

int(((a + b*x)*(d + e*x)^(3/2))/(a^2 + b^2*x^2 + 2*a*b*x)^(5/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(e*x+d)**(3/2)/(b**2*x**2+2*a*b*x+a**2)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________